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SUMMARY

After central nervous system (CNS) demyelination—

such as occurs during multiple sclerosis—there is

often spontaneous regeneration of myelin sheaths,

mainly by oligodendrocytes but also by Schwann

cells. The origins of the remyelinating cells have not

previously been established. We have used Cre-lox

fate mapping in transgenic mice to show that

PDGFRA/NG2-expressing glia, a distributed popula-

tion of stem/progenitor cells in the adult CNS, pro-

duce the remyelinating oligodendrocytes and almost

all of the Schwann cells in chemically induced de-

myelinated lesions. In contrast, the great majority of

reactive astrocytes in the vicinity of the lesions are

derived from preexisting FGFR3-expressing cells,

likely to be astrocytes. These data resolve a long-

running debate about the origins of the main players

in CNS remyelination and reveal a surprising capacity

of CNS precursors to generate Schwann cells, which

normally develop from the embryonic neural crest

and are restricted to the peripheral nervous system.

INTRODUCTION

The adult CNS does not usually regenerate efficiently after

mechanical injury or degenerative disease. However, the remye-

lination that follows destruction of central myelin is an exception

to this rule and provides a striking example of stem/precursor

cell-mediated regeneration. Remyelination involves the genera-

tion of new myelin-forming glia that elaborate multilamellar

myelin sheaths around denuded axons, restoring saltatory con-

duction and conferring axonal protection (Franklin and ffrench-

Constant, 2008).

CNS remyelination is usually mediated by oligodendrocytes

and can occur efficiently and extensively after experimentally

induced demyelination in animal models or during demyelinating

diseases such as multiple sclerosis (MS), the most common

neurological disease of young adults (Patrikios et al., 2006).

CNS remyelination can also be mediated by Schwann cells,

the myelin-forming cells of the peripheral nervous system; this

occurs in several experimental animal models of demyelination

as well as in human demyelinating disease (Dusart et al., 1992;

Felts et al., 2005; Itoyama et al., 1983, 1985; Snyder et al.,

1975). Schwann cell remyelination occurs preferentially where

astrocytes are absent—for example, where they have been killed

along with oligodendrocytes by the demyelinating agent (Blake-

more, 1975; Itoyama et al., 1985). Failure of remyelination in

progressive MS is associated with secondary axonal loss, which

leads to the untreatable clinical deterioration that often charac-

terizes late-stage MS (Trapp and Nave, 2008).

The cellular origins of remyelinating oligodendrocytes and

Schwann cells in the CNS have not been formally resolved.

Mature oligodendrocytes within the spared white matter sur-

rounding demyelinated lesions appear not to contribute to

remyelination (Keirstead and Blakemore, 1997). Instead, it is

generally believed that most remyelinating oligodendrocytes

are derived from adult oligodendrocyte precursors (OLPs, also

known as NG2 cells). These cells, typically identified by their

expression of the proteoglycan NG2 and the platelet-derived

growth factor receptor (alpha subunit, PDGFRA) (Nishiyama

et al., 1996; Pringle et al., 1992), are widespread throughout

the CNS, comprising �5% of all cells in the adult rodent CNS

(Nishiyama et al., 1996; Pringle et al., 1992). Recently, it has

been shown by Cre-lox fate mapping that OLPs continue to
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generate new myelinating oligodendrocytes in the healthy adult

mouse brain for at least 8 months after birth (Dimou et al.,

2008; Rivers et al., 2008). The evidence that OLPs are the major

source of remyelinating oligodendrocytes after demyelination is

indirect but compelling: (1) retroviral or BrdU/autoradiographic

tracing indicates that dividing cells in adult white matter (likely

but not proven to be adult OLPs) give rise to remyelinating

oligodendrocytes (Gensert and Goldman, 1997; Watanabe et al.,

2002), (2) remyelination can be achieved by transplanted OLPs

(Zhang et al., 1999), (3) demyelinating lesions are repopulated

by OLPs prior to the appearance of remyelinating oligodendro-

cytes (Sim et al., 2002b), and (4) cells expressing molecular

markers of both OLPs and oligodendrocytes can be identified

at the onset of remyelination (Fancy et al., 2004).

In contrast, remyelinating Schwann cells within the CNS are

generally thought to migrate into the CNS from PNS sources

such as spinal and cranial roots, meningeal fibers, or autonomic

nerves after a breach in the glia limitans (Franklin and Blakemore,

1993). In support of this idea, CNS Schwann cell remyelination

typically occurs in proximity to spinal/cranial nerves or around

blood vessels (Duncan and Hoffman, 1997; Sim et al., 2002a;

Snyder et al., 1975). However, the ability of CNS precursors to

generate Schwann cells in vitro and after transplantation into

the demyelinated CNS raises the possibility that some CNS

Schwann cell remyelination might result from unusual differenti-

ation of endogenous CNS precursors (Keirstead et al., 1999;

Mujtaba et al., 1998).

In this study, we used genetic fate mapping with a battery of

Cre transgenic mice to investigate the cellular origins of the

new oligodendrocytes, Schwann cells, and astrocytes that

develop in and around toxin-induced demyelinated lesions. We

show (1) that PDGFRA- and OLIG2-expressing precursors

(OLPs) give rise to all remyelinating oligodendrocytes, (2) that

the majority of remyelinating Schwann cells within the CNS are

also derived from OLPs, not P0-expressing Schwann cells in

the PNS, and (3) that the great majority of newly generated reac-

tive astrocytes (but not oligodendrocytes or Schwann cells) are

derived from FGFR3-expressing cells, most likely preexisting

astrocytes. Collectively, these data provide a detailed account

of the cellular origins of the macroglial cells that reconstruct

areas of CNS white matter demyelination.

RESULTS

Efficient Labeling of PDGFRA-Expressing Cells

after Lysolecithin-Induced Demyelination

By using Pdgfra-creERT2:Rosa26-YFPmice, which allow tamox-

ifen-inducible expression of yellow fluorescent protein (YFP) in

PDGFRA+ precursor cells and all of their progeny (Rivers et al.,

2008), we asked whether the YFP reporter was expressed in

OLPs that repopulate areas of lysolecithin-induced demyelin-

ation in spinal cord white matter. Tamoxifen was administered

to Pdgfra-creERT2:Rosa26-YFP mice starting on postnatal day

75 (P75), lysolecithin lesions were induced on �P85, and YFP

immunohistochemistry (IHC) was performed on tissue sections

6 days postlesion induction (dpl), when there are many OLPs

within the lesion but not yet any differentiated oligodendrocytes

(Figure S1A available online; Arnett et al., 2004). The lesioned

area contained abundant YFP+ cells, which were confirmed to

be OLPs by colabeling for OLIG2, PDGFRA, and NG2 (Figure 1).

At 4 dpl, all YFP+ cells within the lesion were positive for tran-

scription factorOLIG2 (FigureS1B) and forNG2 (data not shown),

consistent with previous reports (Ligon et al., 2006). We esti-

mated the efficiency of YFP labeling (fraction of PDGFRA-posi-

tive cells that were also YFP immunopositive) to be 39% ± 7%

(data not shown). The fraction of the OLIG2+ population that

was also YFP+ in these animals was 32% ± 9% and this did not

change significantly at longer survival times (Figure S1C).

Adult OLPs Generate Remyelinating Oligodendrocytes

To establish whether YFP+ OLPs differentiated into remyelinat-

ing oligodendrocytes, sections from 21 day lesions, when re-

myelination is complete, were examined by double IHC with

YFP and either CC1 or Transferrin, two markers of differentiated

oligodendrocytes. Abundant YFP+/CC1+ and YFP+/Transferrin+

cells were evident within the outer rim of the lesion, where oligo-

dendrocyte-mediated remyelination can be detected by

histology (Figure 2; Figure S2). Within the YFP+ population at

14 dpl, 32% ± 7% of cells were CC1+ (at a density of 167 ± 36

cells/mm2) and 11% ± 2% were Transferrin+, while at 21 dpl

45% ± 6% (346 ± 50 cells/mm2) were CC1+ and 24% ± 3%

were Transferrin+ (Figure 2C). In spinal cord white matter, all

Transferrin+ cells were also CC1+ (data not shown). None of

the CC1+ or Transferrin+ oligodendrocytes in surrounding intact

tissue expressed YFP. However, we did find occasional YFP+

cells of oligodendrocyte morphology expressing CC1 in the

normal appearing white matter remote from the lesion and in

intact gray matter (data not shown), consistent with our earlier

findings (Rivers et al., 2008). To show that YFP+ cells at 21 dpl

were associated with myelin sheaths, longitudinal spinal cord

sections were cut from previously demyelinated tissue and

stained for YFP and the myelin proteolipid protein (PLP). YFP is

sterically excluded from compact myelin, but there was a clear

association between YFP+ cytoplasmic processes/channels

and PLP+ compacted myelin (Figure 2D). Finally, we were able

to identify YFP+ cells with distinctive myelinating oligodendro-

cyte morphology when they were dye-filled by electroporation,

thereby providing further direct evidence that Pdgfra-expressing

precursors give rise to remyelinating oligodendrocytes (Fig-

ure 2E; Movie S1). We found little evidence for generation of

neurons within repairing white matter lesions, although rare

DCX+/YFP+ cell bodies were observed (<0.01% of YFP+ cells).

These findings indicate that adult OLPs are able to differentiate

into myelin-forming oligodendrocytes after CNS demyelination.

Oligodendrocyte Precursor Cells Differentiate

into Remyelinating Schwann Cells

Consistent with previous descriptions of remyelination after

toxin-induced demyelination, we observed Schwann cell remye-

lination in the center of lysolecithin-induced lesions, which were

typically devoid of astrocytes, whereas oligodendrocyte remye-

lination occurred in astrocyte-containing regions around the

lesion edge (Blakemore, 1975; Talbott et al., 2005; Woodruff

and Franklin, 1999). We asked whether OLPs can contribute to

this Schwann cell remyelination in Pdgfra-creERT2: Rosa26-

YFP mice. At 14–21 dpl, when oligodendrocyte and Schwann

cell myelin sheaths are present, we found clusters of YFP+ cells
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that did not express OLIG2 (Figure 3A; Figure S2B). Many of

these YFP+ cells had nuclear expression of the Schwann cell-

associated transcription factor SCIP/OCT6. SCIP is expressed

by premyelinating Schwann cells and its expression is downre-

gulated at the onset of myelination (Sim et al., 2002a). The

fraction of SCIP+ cells that was YFP+ in ventral funiculus lesions

ranged from 40%±10%at 14 dpl to 24%±11%at 21 dpl.Within

the same areas of the lesion, many of the YFP+ cells associated

with myelin sheaths were positive for Periaxin, a myelin protein

expressed in PNS-myelin but not CNS-myelin (Figure 3B; Gilles-

pie et al., 1994). We found that 20% ± 2% of YFP+ cells were

Periaxin+ at 14 dpl (which accounts for 35% ± 9% of total

number 300 ± 83 Periaxin-positive cells per mm2) and 29% ±

13% at 21 dpl (31% ± 14% of total 650 ± 250 Periaxin-positive

cells per mm2). These cells had the distinctive morphology of

myelinating Schwann cells and were closely associated with

axons, identified in longitudinal sections by the anti-neurofila-

ment antibody SMI31 (Figure 3C).

Previous studies have shown that ethidium bromide (EB)-

induced demyelinating lesions in the spinal cord differ from

lysolecithin-induced lesions by having a greater depletion of

astrocytes, associated with a higher proportion of Schwann

cell-mediated remyelination (Blakemore and Franklin, 2008).

We explored the origin of these remyelinating Schwann cells,

by injecting EB solution into the spinal cord white matter of

Pdgfra-creERT2: Rosa26-YFP mice. At 21 dpl, we found that

a significantly higher proportion of YFP+ cells coexpressed

Periaxin in EB lesions than in lysolecithin-induced lesions (56%±

8% which accounts for 36% ± 12% of total 811 ± 250 Periaxin-

positive cells permm2), whereas the proportion of YFP+ cells that

were Transferrin+ oligodendrocytes was similar in both types of

lesion (39% ± 4% versus 45% ± 6%, respectively) (Figure 3D).

These observations suggested that at least some of the remyeli-

nating Schwann cells in both types of lesion were derived from

PDGFRA+ OLPs.

An alternative explanation for the findings described above is

that Schwann cells in the PNS upregulate Pdgfra (and hence

CreERT2) in response to nearby injury in the CNS and that these

cells then migrate into the demyelinated CNS. To test this possi-

bility, we induced activation of the PNS by performing a sciatic

nerve crush injury in Pdgfra-creERT2: Rosa26-YFP mice. At 6

days after injury, we were able to detect Pdgfra transcripts by

RT-PCR of mRNA isolated from injured nerve and also found

many YFP+ cells at the injury site. However, none of these cells

colabeled with the Schwann cell lineage markers, SCIP/OCT6,

S100, p75, or Periaxin. The same was also true at 21 dpl, when

axon regeneration was advanced. Instead, the YFP+ cells cola-

beled with fibronectin and were therefore likely to be cells of

the connective tissue elements of the peripheral nerve (Figure 4;

Raivich and Kreutzberg, 1987).

As a further test of the idea that remyelinating Schwann cells in

the CNS are centrally derived, we used an Olig2-cre transgenic

Figure 1. Identification of Genetically Labeled PDGFRA+ Cells in the Intact and Demyelinated Adult Spinal Cord

(A) Six days after induction of demyelination by injection of lysolecithin into the left ventrolateral white matter (dotted line), YFP+ cells can be seen throughout the

white and gray matter and particularly concentrated within the lesion area (dpl, days postlesion; scale bar represents 500 mm).

(B) Many of the YFP+ cells express OLIG2 in their nuclei (scale bars represent 100 mm in low-power image and 10 mm in higher-magnification confocal image).

(C) Density of YFP+/OLIG2ÿ and YFP+/OLIG2+ cells in normal nondemyelinated (intact) and demyelinated (lesion) tissue at 6, 14, and 21 DPL (n = 7, mean ± SD).

(D) Nearly all YFP+ cells coexpress the OLP markers NG2 and PDGFRA (scale bars represent 20 mm).
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line (Kessaris et al., 2006) (see Experimental Procedures). Note

that this line expresses a constitutively active version of Cre,

so that all the descendants of Olig2-positive precursors in the

embryo and adult are labeled, including motor neurons, mature

oligodendrocytes, and adult OLPs, as well as a subset of fibrous

and protoplasmic astrocytes (H.-H. Tsai and D.H.R., unpub-

lished observations) (Masahira et al., 2006). We first demon-

strated that, in contrast to Pdgfra, there was no expression of

Olig2 mRNA in normal or crushed peripheral nerve, confirming

thatOlig2 expression is confined to the CNS (Figure 4). Similarly,

we did not observe YFP expression in any cells (apart from some

axons) after sciatic nerve crush in Olig2-cre: Rosa26-YFP mice,

confirming that Olig2 is not expressed within peripheral glia

even after injury (Figure 5C). However, we found numerous

YFP+ cell bodies associated with Periaxin+myelin sheaths within

remyelinated spinal cord lesions in Olig2-cre: Rosa26-YFP mice

at 21 dpl, suggesting that remyelinating Schwann cells in the

CNS were derived from CNS precursors (Figures 5A and 5B).

If Schwann cells come from CNS precursors, we predict that it

should be possible to identify transitional cells that coexpress

markers of both CNS and PNS myelinating lineages. Because

many of the antibodies needed to test this prediction were raised

inmouse, we instead examined lesions in rat CNS,made either in

the caudal cerebellar peduncles by injection of ethidium bromide

(Woodruff and Franklin, 1999) or in spinal cord white matter

by injection of lysolecithin (Blakemore, 1975). At 7 dpl, shortly

before both oligodendrocyte and Schwann cell remyelination

commences in these models, approximately half (56% ± 8%)

Figure 2. Expression of Mature Oligodendrocyte Markers in YFP+ Cells with Morphological Features of Myelinating Oligodendrocytes

(A and B) Confocal images of spinal cord cross sections at 21 dpl immunostained with (A) anti-CC1 and (B) anti-Transferrin antibodies (scale bar represent 45 mm).

High-power confocal projections of z-stacks show double-labeled cells from boxed regions (scale bars represent 10 mm). In the normal appearing white

matter (NAWM), YFP+ cells do not express mature oligodendrocyte markers (scale bar, 20 mm).

(C) Density of YFP+ cells expressing CC1 alone or CC1 and Transferrin at 14 and 21 dpl.

(D) Longitudinal section of a remyelinated area at 21 dpl showing YPF+ processes closely associated with PLP+ myelin sheaths (arrows, scale bar represents

10 mm).

(E) Alexa dye labeling of a YFP+ cell at 21 dpl by electroporation reveals a cell with a distinctive multiprocessed morphology characteristic of a myelinating

oligodendrocyte (scale bar represents 20 mm, see also Movie S1).
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of the SCIP+ cells also expressed Nkx2.2 (normally expressed by

oligodendrocytes but not Schwann cells), whereas at 10 dpl,

when new myelin sheaths are evident, the proportion had

decreased (23% ± 10%) (Figure S3). This supports the conclu-

sion that at least some of the remyelinating Schwann cells are

CNS derived.

Figure 3. Pdgfa-creERT2 Cells Give Rise to Myelinating Schwann Cells

(A) At 21 dpl, AQP-4 immunonegative (astrocyte-free) areas of the lesions can be identified containing YFP+/OLIG2-negative cells with morphologies resembling

myelinating Schwann cells (left image) (the inset shows a group of cells in an adjacent section [corresponding to the boxed area], immunolabeled for OLIG2).

Scale bars represent 100 mm (left image) and 20 mm (inset). Many of these YFP+ cells express the Schwann cell transcription factor SCIPwithin their nuclei (middle

and right images, scale bar represents 10 mm). The histograms show the density of YFP+/SCIPÿ and YFP+/SCIP+ cells at 14 and 21 dpl.

(B) YFP+ cells with Schwann cell-like morphology are associated with Periaxin+myelin sheaths (scale bar represents 50 mm). The boxed area in the left panel is

shown at higher magnification in the middle panel and as a confocal Z-projection in the top right panel (scale bar represents 10 mm). The histograms show the

density of YFP+/Periaxinÿ and YFP+/Periaxin+ cells at 14 and 21 dpl.

(C) Periaxin+ cells derived fromPDGFRA+ precursors at 21 days after lesion show 1:1 interactions with two parallel SMI31+ axons in longitudinal section (indicated

by arrowheads on merged image; scale bars represent 20 mm).

(D) During remyelination of EB-induced lesions, a higher percentage of YFP+ cells coexpressed Periaxin+ than in lysolecithin-induced lesions at 21 dpl, while the

proportion of remyelinating oligodendrocytes generated from PDGFRA+ precursors is approximately the same for both lesion types (p > 0.5, data expressed as

percentage of YFP+ cells ± SEM).
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Few Remyelinating Schwann Cells in the CNS

Are Derived from P0-Expressing Schwann

Cells in Peripheral Nerves

Our data provide strong evidence that remyelinating Schwann

cells within the CNS can be derived from PDGFRA+/OLIG2+

CNS precursor cells. However, this does not exclude the possi-

bility that a subset of remyelinating Schwann cells might also be

derived from preexisting Schwann cells associated with periph-

eral nerves of, for example, the spinal roots, meningeal sensory

fibers, or autonomic fibers associated with larger blood vessels.

To test this, we used amouse line in which CreERT2 is expressed

under transcriptional control of the promoter of the peripheral

myelin-associatedgeneP0, allowingus toprelabel P0-expressing

Schwann cells in P0-creER
T2: Rosa26-YFP mice by tamoxifen

administration prior to inducing focal demyelination in the dorsal

or ventral spinal cordwhitematter. A high proportion (83%± 2%)

of Periaxin-positive Schwann cells within dorsal and ventral roots

were labeled with YFP in these mice (Figure 6A). However, very

few Periaxin/YFP double-labeled Schwann cells were found in

the spinal cord within ventral white matter lysolecithin lesions

(7% ± 2.6% of total Periaxin+ cells); the few YFP+/Periaxin+ cells

identified were at the edges of the lesioned white matter and

usually associated with disruption of the meningeal membranes.

Within dorsal funiculus lesions, where there was no overt disrup-

tion of the integrity of the dorsal aspect of the spinal cord, none of

thePeriaxin+ cells colabeledwith YFP (Figures 6Band 6C). Taken

together, our data indicate that although P0
+ Schwann cells can

contribute to Schwann cell-mediated remyelination of the CNS,

the great majority of Schwann cell-derived myelin internodes in

remyelinated lesions are of CNS origin (Figure 6D).

Most Astrocytes within Remyelinated Lesions

Are Derived from FGFR3-Expressing Cells

In addition to remyelinating cells, there is also generation of new

astrocytes within areas of lysolecithin-induced demyelination.

We asked whether astrocytes within repaired lesions were

derived from OLPs, because these cells are known to be able

to differentiate into astrocytes in vitro (Raff et al., 1983) and in

brain injury (Cassiani-Ingoni et al., 2006). We identified astro-

cytes by immunolabeling for Aquaporin-4 (AQP4), a transmem-

brane water channel protein that is expressed in the CNS mainly

by astrocytes (Nagelhus et al., 1998). Glial fibrillary acidic protein

(GFAP), a more commonly used marker of fibrous astrocytes, is

also expressed by premyelinating Schwann cells in repairing

lysolecithin-induced lesions. Examination of lesions induced in

Pdgfra-creERT2: Rosa26-YFP mice at 21 dpl revealed a small

number of YFP+/AQP4+ cells (�3%), usually on the outer rim of

the lesion area, indicating that some astrocytes within the lesion

were derived from Pdgfra-creERT2-expressing precursors

(Figure 7A). However, the majority of astrocytes were evidently

of a different origin. Given the ability of adult astrocytes to

undergo cell division, we hypothesized that newly generated

astrocytes might be derived by proliferation of preexisting astro-

cytes (Buffo et al., 2008; Chen et al., 2008). Adult astrocytes can

be identified by the expression of FGFR3 (which is also ex-

pressed by cells in the ependymal zone [EZ] associated with

the spinal cord central canal), so in order to test this hypothesis,

lesions were induced in homozygous Fgfr3-icreERT2:Rosa26-

YFPmice, in which astrocytes and EZ cells are YFP labeled after

tamoxifen administration (Young et al., 2010). Examination of

lysolecithin-induced dorsal and ventral lesions at 21 dpl revealed

that 96% ± 3% of YFP+ cells expressing AQP4+ (which

comprises virtually all AQP4+ cells within the lesion area) and

93% ± 5% of those cells expressing GFAP+ throughout the re-

paired area, indicating that the majority of astrocytes associated

with lesion repair were derived from Fgfr3-expressing cells

(Figure 7B). However, we did not find any YFP+ cells that also im-

munolabelled for OLIG2 (Figure S4), CC1, or Periaxin, so it

appears that Fgfr3+ cells do not generate remyelinating oligo-

dendrocytes or Schwann cells. These data indicate that most

reactive astrocytes in demyelinated lesions derive from local

astrocytes, not OLPs.

DISCUSSION

White matter injury involving loss of glia with preservation of

axons has the capacity to undergo complete cytoarchitectural

reconstruction with restoration of the glial compartment. This

process can involve the generation of new astrocytes and mye-

linating cells. Lesions of CNS white matter that involve loss of

both astrocytes and oligodendrocytes can be reconstructed so

that they resemble peripheral nerve, with the axons remyelinated

by Schwann cells in the absence of astrocytes (Blakemore,

1975; Itoyama et al., 1985). Despite the fact that demyelin-

ation/remyelination in rodents has beenmuch studied as amodel

for human disease, the origins of the glial cells that contribute to

the process of reconstruction have not been unambiguously

defined. In this study we have used genetic lineage tracing strat-

egies to define the origins of oligodendrocytes, astrocytes, and

Schwann cells after the induction of focal white matter lesions.

A body of previous work has provided evidence—indirect but

persuasive—that remyelinating oligodendrocytes are derived

from adult OLPs/NG2 cells (Franklin and ffrench-Constant,

2008). Our present study provides direct and unequivocal confir-

mation of that conclusion, by genetic fate-mapping in transgenic

mice. Although we have demonstrated that Pdgfra-expressing

OLPs generate many remyelinating oligodendrocytes, we

cannot conclude that OLPs are the only source. It remains

possible, though less likely than before, that surviving mature

oligodendrocytes might synthesize a subset of new myelin

internodes. We found no evidence that remyelinating cells are

derived from Fgfr3-expressing cells—either parenchymal astro-

cytes or stem/progenitor cells from the EZ around the cen-

tral canal. We conclude that Pdgfra+ precursor cells in the paren-

chyma are the primary source of remyelinating oligodendrocytes

in the mouse spinal cord.

It has been generally assumed that the Schwann cells that

myelinate CNS axons are derived from PNS Schwann cells

that migrate into the CNS after disruption of the astrocytic glia

limitans (Franklin and Blakemore, 1993). This is an attractive

hypothesis because Schwann cell remyelination occurs in areas

where astrocytes are absent and is more extensive when lesions

are located close to a peripheral nerve source (Duncan and

Hoffman, 1997; Snyder et al., 1975). Schwann cell remyelination

after EB-induced demyelination in the spinal cord is greater

when the lesion is close to spinal roots and meningeal nerves

than when it is more remote from the PNS, for example when it

is within the cerebellar peduncles (Sim et al., 2002a). Schwann
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Figure 4. PDGFRA Expression in Intact and Injured Sciatic Nerve of Pdgfra-creERT2 Mice

(A) YFP+ cells are detected at 6 days after nerve crush but not in intact noncrushed nerve; OLIG2 is not detected in either intact or crushed nerves. Longitudinal

sections of sciatic nerves were double immuno-labeled for YFP and OLIG2 (scale bars represent 100 mm and 20 mm in low- and high-magnification images,

respectively). RT-PCR analysis confirmed the lack of Olig2 transcripts in the intact or crushed sciatic nerve (lane 1, control intact nerve; lane 2, crushed nerve,

6 hr; lane 3, intact nerve, 24 hr; lane 4, crushed, 24 hr; lane 5, intact, 6 dpl; lane 6, crushed, 6 dpl; lane 7, dorsal root ganglia; compared with the level of expression

in cultured OLPs; lanes 8 and 9, RNA from two separate OLP cultures), while Pdgfra can be detected in both intact and injured nerve (a housekeeping gene,

Cyclophilin, was used as a normalization control).

(B) Immunohistochemical characterization of YFP-expressing cells in 6 dpl sciatic nerve. YFP+ cells do not coexpress early Schwann cell markers such as SCIP,

S100, and p75. Micrographs of longitudinal sections stained with anti-YFP and Schwann cell markers (main image scale bars represent 100 mm) and
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cell remyelination typically occurs around blood vessels, sug-

gesting that the remyelinating Schwann cells might derive from

autonomic nerve fibers associated with larger vessels (Sim

et al., 2002a) and might use the extracellular matrix-rich environ-

ment around vessels as a substrate for migration. It has been

reported, for example, that transplanted Schwann cells spread

though the CNS along blood vessels (Baron-Van Evercooren

et al., 1996). However, apparently pure preparations of CNS

stem/precursor cells transplanted into areas of EB-induced

demyelination can give rise to remyelinating Schwann cells

(Chandran et al., 2004; Keirstead et al., 1999). In this study, we

provide evidence that endogenous Pdgfra+ andOlig2+ cells, very

likely representing the same population of CNS stem/precursor

cells, efficiently generate remyelinating Schwann cells. Very

few, if any, remyelinating Schwann cells in the CNS were derived

from cells with a prior history of P0 expression—implying that

myelinating Schwann cells rarely invade the remyelinating spinal

cord from the PNS, either directly or after dedifferentiation to

P0-negative Schwann cell precursors. It is thought that many

of the remyelinating Schwann cells that are found in regenerating

peripheral nerves might be derived from ‘‘nonmyelinating

Schwann cells’’ that reside within the nerves; these cells can

express low levels of P0 (Lee et al., 1997) and therefore might

also be expected to label in our P0-creER
T2: Rosa26-YFP mice.

higher-magnification confocal projections of two different optical sections from the same field show nonoverlap between YFP and Schwann cell markers on any

z-levels (inset scale bar represents 30 mm).

(C and D) At 21 dpl some YFP+ cells could still be detected which strongly expressed fibronectin (D) but did not express Periaxin (C).

Figure 5. Remyelinating Schwann cells within CNS Lesion Derived from Olig2+ Cells

(A) Immunostaining for YFP and Periaxin performed on spinal cord cross sections from Olig2-cre: Rosa26-YFP mice at 21 days after lysolecithin-induced

demyelination in ventral spinal cord white matter reveals cells expressing both markers (scale bar represents 50 mm) (confocal projection of cells from the boxed

area, lower panel, scale bar represents 10 mm).

(B) Overlay confocal image showing a high level of YFP/Periaxin colocalization (single channels for YFP and Periaxin; scale bar represents 50 mm) confirming that

nearly all of Periaxin+ cells remyelinating lesions in the dorsal funiculus are generated from Olig2-cre-expressing cells.

(C) YFP was expressed within sciatic nerve axons inOlig2-cre:Rosa26-YFPmice. There were no YFP+ cell bodies detected in injured sciatic nerves 28 days after

nerve crush. Micrographs and confocal projections of longitudinal sections through the nerve show colocalization of YFP and SMI31 (axonal marker) but no

overlap of YFP with the Schwann cell myelin protein Periaxin (scale bars represent 20 mm).
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If so, our data suggest that theymake only a small contribution to

Schwann cell-mediated CNS remyelination. However, because

we cannot be sure that nonmyelinating Schwann cells normally

express the P0-creER
T2 transgene at levels high enough to

trigger recombination, we cannot exclude the possibility that

these cells make a contribution to central remyelination. In

a different context, it will be interesting to discover the extent

to which either CNS precursors or PNS Schwann cells contribute

to the extensive Schwann cell remyelination that follows trau-

matic injury to the spinal cord.

What could cause CNS-resident precursors to become

Schwann cells, which are normally found only in the PNS? One

Figure 6. Some Periaxin+ Cells within Remyelinating CNS Lesions Are Derived from P0-Expressing Cells of the PNS, whereas the Majority Is

Derived from PDGFRA- and OLIG2-Expressing CNS-Derived Cells

(A) Longitudinal and transverse sections of ventral root from P0-creER
T2:Rosa26-YFPmice stained with anti-YFP and anti-Periaxin antibody show high efficiency

of recombination 83% ± 2% (scale bars represent 30 mm).

(B) No Periaxin+ cells generated from P0-creER
T2-expressing cells are detected in the dorsal lysolecithin-induced lesions at 21 dpl (scale bars represent 30 mm).

(C) Labeling of ventral roots in P0-creER
T2:Rosa26-YFP mice provides an internal control for recombination efficiency. Although there is abundant Periaxin

immunoreactivity in both the ventral roots and remyelinating lesions in the ventral funiculus at 21 dpl, YFP immunoreactivity is largely confined to the ventral

root (scale bar represents 100 mm).

(D) At 21 dpl in Pdgfra-creERT2:Rosa26-YFP orOlig2-Cre:Rosa26-YFPmice, there is extensive overlap of Periaxin and YFP immunoreactivity within remyelinating

lesions but no overlap in the ventral roots (VR). The converse situation is found in P0-creER
T2:Rosa26-YFPmice; there is very little overlap between Periaxin and

YFP within demyelinated lesions (arrows) whereas nearly all Periaxin+ cells in the ventral roots are YFP+ (scale bars represent 50 mm).
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possibility is that a subset of CNS precursors are intrinsically pro-

grammed to follow a ‘‘neural crest’’ pathway of development. We

are not aware of any data that support this idea other than

reports of cells with a Schwann cell-like morphology within the

normal CNS (Gudiño-Cabrera and Nieto-Sampedro, 2000).

Alternatively, CNS precursors might be exposed to a specific

microenvironment within demyelinated lesions that induces

ectopic Schwann cell differentiation. Conceivably, this might

be triggered by members of the bone morphogenetic protein

(BMP) family because pretreating adult OLPs with BMPs

in vitro prior to transplantation into demyelinating spinal cord

resulted in enhanced Schwann cell remyelination (Crang et al.,

2004). Conversely, engineering CNS precursors to overexpress

Noggin, an inhibitor of BMP signaling, inhibited Schwann cell

differentiation after CNS transplantation (Talbott et al., 2006).

Astrocytes have been reported to secrete Noggin (Kondo and

Raff, 2004), potentially explaining why the absence of astrocytes

in demyelinated lesions might favor Schwann cell differentiation.

The implications of Schwann cell remyelination of CNS axons

are unclear. Although both Schwann cell and oligodendrocyte

remyelination are associated with a return of saltatory conduc-

tion (Smith et al., 1979), their relative abilities to promote axon

survival, a major function of myelin (Nave and Trapp, 2008),

have yet to be established. Thus, from a clinical perspective,

we do not yet know whether OLP differentiation into Schwann

cells has a beneficial or deleterious effect compared to oligoden-

drocyte remyelination.

In the final part of this study, we investigated the origin of newly

generated astrocytes that repopulate the periphery of lesions

where oligodendrocyte remyelination predominates. OLPs can

be induced to generate GFAP+ cells in vitro (Raff et al., 1983)

and there is some evidence that this differentiation pathway is

followed during normal development and adulthood (Levison

and Goldman, 1993; Zhu et al., 2008). In our study we found

that a small proportion of newly generated astrocytes in lesions

were derived fromPdgfra+-expressing cells. It has been reported

that differentiation of OLPs into astrocytes after brain injury is

associated with the translocation of OLIG2 from nucleus to

cytoplasm (Magnus et al., 2007). However, this observation

might simply reflect transient expression of OLIG2 by preexisting

astrocytes that are induced to proliferate and/or dedifferentiate

in response to injury (Chen et al., 2008). We also cannot exclude

the possibility that some proliferating astrocytes might tran-

siently express Pdgfra. The overwhelming majority, however,

descend from Fgfr3+ cells. Fgfr3 is expressed by two distinct

cell populations within the spinal cord—astrocytes and putative

stem/progenitor cells around the central canal (Young et al.,

2010). However, given that parenchymal astrocytes can divide

in response to injury, it seems probable that many of the newly

generated astrocytes (identified by expression of AQP4) are

derived from local, proliferating astrocytes rather than from

cells in the EZ, at a distance from the lesion (Buffo et al., 2008;

Cavanagh, 1970; Chen et al., 2008). Several studies have

described the ability of adult parenchymal astrocytes to adopt

a multipotent stem cell-like phenotype after injury (Buffo et al.,

2008; Steindler and Laywell, 2003). However, we found no

evidence of astrocyte multipotency after spinal cord demyelin-

ation because Fgfr3+ cells gave rise only to AQP4+ astrocytes

but not to oligodendrocytes or Schwann cells. We found no evi-

dence of neurogenesis during the repair of lysolecithin lesions, in

contrast to reports suggesting generation of white matter

neurons after immune-mediated injury to spinal cord white

matter (Danilov et al., 2006).

In summary, we have used a genetic fate mapping approach

to show that, during the reconstruction of demyelinating lesions

in adult white matter, new remyelinating oligodendrocytes and

Schwann cells are mainly derived from adult OLPs whereas

Figure 7. PDGFRA+ Precursors Give Rise to Limited Number of

Astrocytes in the Lesion, usually within the Outer Rim of the Lesion

(A) Low-power micrograph of a dorsal lesion immunolabelled for YFP and

AQP4 (scale bar represents 50 mm). A cell with a YFP+ cytoplasm that also

expresses AQP4 on its surface (arrow; scale bar represents 10 mm) can easily

be distinguished from an AQP4-negative cell (arrowhead).

(B) Themajority of AQP4+ astrocytes within the lesion are derived from FGFR3+

cells as shown by double immunolabelling for YFP and either GFAP or AQP4 in

dorsal or ventral lesions (scale bars represent 100 mm in main image, 20 mm in

higher-magnification images of areas indicated by boxes).
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new astrocytes are derived mainly from other astrocytes. Our

results together with those of others provide evidence that adult

OLPs/NG2 cells have a wider differentiation potential than previ-

ously thought, exhibiting the capacity to differentiate into

Schwann cells of neural crest lineage as well as all three neuro-

epithelial lineages (neurons, astrocytes, and oligodendrocytes)

(Belachew et al., 2003; Dimou et al., 2008; Kondo and Raff,

2000; Nunes et al., 2003; Rivers et al., 2008). A definitive demon-

stration of adult OLPmultipotency would require clonally derived

cells. However, clonal derivation from single adult OLPs is not

technically feasible at present. Future studies are likely to focus

on amore detailed analysis of how andwhy CNS precursor/stem

cells give rise to Schwann cells and—critically important from

a translational perspective—whether repair of demyelinated

lesions by CNS-derived oligodendrocytes or Schwann cells is

preferable.

EXPERIMENTAL PROCEDURES

Animals

Pdgfra-creERT2, Fgfr3-icreERT2 and P0-creER
T2 transgenic mice have been

described (Leone et al., 2003; Rivers et al., 2008; Young et al., 2010).Olig2-cre

mice were produced via blastocyst injection of ESCs in which an IRES-Cre-

lox-PGK-Neo-lox cassette was introduced into the single exon of Olig2 and

PGK-Neo subsequently removed with Cre (D.H.R., N.K., and W.D.R., unpub-

lished). Mice were housed under standard laboratory conditions on a 12 hr

light/dark cycle with constant access to food and water. Homozygous or

heterozygous Cremicewere crossedwith homozygousRosa26-YFP reporters

to generate double-heterozygous offspring for analysis. Demyelination exper-

iments were performed on female mice aged 11–13 weeks (nominally post-

natal day 85, P85) according to the principles of laboratory animal care

approved by the UK Home Office. Requests for mice from the Richardson

laboratory can be made via http://www.ucl.ac.uk/�ucbzwdr/Richardson.htm.

Tamoxifen Induction

Cre recombinationwas inducedby administering tamoxifen (Sigma, 40mg/ml),

dissolved in corn oil by sonication for 45 min at 30�C. Adult mice were given

300 mg per kg of body weight by oral gavage on 4 consecutive days, then

allowed to recover for 4 days prior to inducing demyelination on�P85. In spinal

cords ofPdgfra-creERT2:Rosa26-YFPmice examined 1day after the final dose

of tamoxifen, 39%±7%of PDGFRA+OLPswere labeled for YFP (mean ±SEM;

n = 5). In Fgfr3-icreERT2: Rosa26-YFP mice subjected to a similar regimen,

practically all ependymal cells of the central canal and a high proportion

(>95%) of Fgfr3-expressing astrocytes in the parenchyma labeled for YFP

(Rivers et al., 2008 and not shown). TheOlig2-cre line drove Cre recombination

in all oligodendrocyte-lineage cells andmotor neurons (Kessaris et al., 2006). In

P0-creER
T2mice, 83%±2%of cells in the ventral anddorsal roots becameYFP

labeled.

Surgical Procedures

Four days after tamoxifen induction, mice underwent a spinal cord white

matter demyelination. In brief, mice received subcutaneous buprenorphine

(30 mg per kg of body weight) as analgesic treatment and were anesthetized

with isoflurane. Demyelination was induced by injection of 1 ml of 1% La-lyso-

phosphatidylcholine (lysolecithin, SIGMA) or 0.1% ethidium bromide (EB) into

the ventral or dorsal white matter funiculus at the level of T12 as previously

described in detail (Arnett et al., 2004). The position of T13 was identified

and the epaxial musculature was cleared from the immediate area. The space

between T12 and T13 was exposed and carefully cleared, the central vein was

identified, and the dura was pierced with a dental needle lateral to the vein. A

three-way manipulator was then used to position the needle for stereotaxic

injection of lysolecithin or EB. Hamilton needle with a fine glass tip was

advanced through the pierced dura at an angle appropriate for ventrolateral

or dorsal funiculus injection. Injection was controlled at 1 ml per minute and

the needle remained in the injection site for 2 min to allow maximal diffusion

of toxin. For sciatic nerve crush, an incision was made over the length of the

right hip and, after exposing the sciatic nerve, haemostatic forceps were

used for 45 s to induce a crush injury of the sciatic nerve. Lesions in adult

rat cerebellar peduncle and spinal cord were as previously described (Shields

et al., 1999; Woodruff and Franklin, 1999).

Tissue Preparation

Mice were anesthetized with pentobarbitone and perfused through the

ascending aorta with 4% (w/v) paraformaldehyde (PFA, Sigma) in phos-

phate-buffered saline (PBS) (pH 7.4). Unfixed tissue was used for reverse

transcriptase-PCR. The tissue surrounding the injection site was dissected,

postfixed in 4% PFA at 4�C overnight, cryo-preserved in 30% (w/v) sucrose

for 12–24 hr at 4�C, embedded in OCT, frozen on dry ice, and sectioned in

a cryotome (12 mm). Coronal and longitudinal cryo-sections were thaw-

mounted onto Poly-L-lysine-coated slides and stored at ÿ80�C.

Immunohistochemistry

Frozen sections, after several rinses in PBS, were permeabilized and blocked

with PBS containing 0.3% (v/v)Triton X-100 and 10% (v/v) donkey serum in

PBS for 1 hr at room temperature (RT, 20-25�C), then incubated for 12 hr at

4�C with primary antibodies followed by incubation with fluorophore-conju-

gated secondary antibodies for 1 hr at RT. Primary and secondary antibodies

were diluted in PBS containing 0.1% Triton X-100. For double or triple labeling,

the above procedure was repeated sequentially with primary antibodies from

different animal species and distinguishable fluorophore-conjugated

secondary antibodies. Slides were coverslipped in mounting medium contain-

ing DAPI dye (Dako) and examined under the fluorescence microscope. The

following primary antibodies were used: PDGFRA (rat, 1:500, BD Sciences),

GFP (rabbit, 1:6000, goat, 1:2000, chicken, 1:2000, AbCam), NG2 (rabbit,

1:500, Chemicon), OLIG2 (rabbit serum, 1:6000, from Dr. Charles Stiles,

Dana-Farber Cancer Institute, Boston, MA), GFAP (rabbit, 1:1000, Dako),

S100 (rabbit, 1:100, Dako), DCX (rabbit, 1:1000, AbCam), AQP4 (rabbit,

1:1000, AbCam), SMI31 (mouse, 1:400, Sternberger), Periaxin (rabbit,

1:3000, from Peter Brophy, Centre for Neuroscience Research, University of

Edinburgh, UK), P75 (rabbit, 1:1000, SIGMA), OCT6 (rabbit, 1:4000, from

Dr. John Bermingham Jr., McLaughlin Research Institute, Great Falls, MT),

Transferrin (rabbit, 1:1000, AbCam), CC1 (mouse, 1:200, Calbiochem), Fibro-

nectin (rabbit, 1:500, Millipore). Secondary antibodies were: Alexa Fluor 488-,

568-, or 647-conjugated donkey antibodies against mouse, rat rabbit, or

goat IgG or IgG1 (1:1000, all from Invitrogen). In situ hybridization with

Pdgfa and P0 riboprobes and the combination of in situ hybridization with

immunohistochemistry was as previously described (Fancy et al., 2004; Sim

et al., 2002a).

Dye-Filling Live Cells

To dye-fill live cells we prepared 300 mm live brain slices of tamoxifen-induced

Pdgfra-creERT2/Rosa26-YFP mice via a vibratome. YFP+ cell bodies were

visible in the two-photon laser scanning microscope at a 890 nm excitation

wavelength. Positive cells were filled with 20 mM Alexa Fluor 488 dye through

a 9–12 MU glass pipette. Images of cells before and after filling were collected

with custom-made ScanImage software and analyzed with ImageJ software

(http://rsbweb.nih.gov.gate1.inist.fr/ij/).

Semiquantitative RT-PCR

Total RNA was isolated from freshly isolated sciatic nerve samples and OLP

cultures via Trizol reagent, cleaned with RNeasyMini kit (QIAGEN), and treated

with DNase I prior to cDNA synthesis. One microgram of total RNA was

reversed transcribed into cDNA with oligo-(dT)12–18 primers and Sensiscript

Reverse Transcriptase according to the manufacturer’s recommendations

(Invitrogen). Two microliters of cDNA were amplified in a thermal cycler with

the following program for each primer pairs: denaturation at 95�C for 45 s,

annealing at a primer-specific temperature for 45 s, followed by extension at

72�C for 1 min, for 40 cycles to enhance the signal. The sequences of the

PCR primers used (50-30) were: Olig2 forward ttccagaacctggttgactc, reverse

ttgggattattccattcca; Pdgfra forward ggtcccatttacatcatcac, reverse attcctcga

gcaacttgata; Cyclophilin (a control housekeeping gene) forward tgagcactggg

gagaaag, reverse aggggaatgaggaaaatatgg.
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Microscopy

For cell imaging and counting, micrographs were acquired with a 203 objec-

tive on a Zeiss Axioplan fluorescent microscope under an appropriate filter

with a digital camera. Composite images were assembled with Adobe Photo-

shop and defined areas were measured with Carl Zeiss AxioVision 4.5. The

lesion area was defined by the density of DAPI-stained nuclei present in the

injured white matter, a feature of inflammatory response to demyelination, or

by solochrome cyanine staining on adjacent sections to those used for

immunohistochemistry. Sections from at least five mice were analyzed for

each data point. A Leica SP2 confocal laser scanning microscope with Leica

Lite software was used formost of themicrography. The optical slice thickness

was 0.5–1 mm. Images were processed with Image J (NIH) software.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and one movie and can be

found with this article online at doi:10.1016/j.stem.2010.04.002.
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